Thursday, April 25, 2019

Black Holes: From the Abstract to Reality

I am a cell biologist at BioTek Instruments, where we manufacture a variety of research instrumentation, some of which are digital microscopes. Like many scientists, I’m also a geek that is interested in fields of science other than my area of research, astronomy for example. One thing about astronomy that has fascinated me is that images of stars in space and cultured cells on a slide look very similar. With astronomy, very large objects (stars) are imaged from very far away. As such, they appear really small and need to be magnified in order to see them. With microscopy, things are very close; the objects are very small and need to be magnified to be seen. Both project as bright objects on a dark background.
Figure 1. NIH3T3 Mouse fibroblasts expressing GFP.
Figure 1. NIH3T3 Mouse fibroblasts expressing GFP.
Then just a few days ago the first images of a black hole was released. Black holes are one of those things you always read about in science fiction novels or see in SciFi movies or shows, not on the front page news. I’m not going to lie; my first thought was it looked like the eye of Sauron in the movie adaptation of The Lord of the Rings.

Image from the Event Horizon Telescope showing the supermassive black hole
Figure 2. Image from the Event Horizon Telescope showing the supermassive black hole in the elliptical galaxy M87, surrounded by superheated material. (EHT Collaboration)
Certainly this is a watershed moment for physics, but it took years of work and the collaboration of hundreds of scientists to make it happen. It also required about half a ton of hard drives. Yes, 1000 pounds of computer hard drives. This is another example of the similarity between microscopy and astronomy - data storage requirements. Before I started working with digital microscopes, my experiments required very little data storage. With digital microscopy, I quickly needed a 1Tb hard drive for my PC, then a 4Tb drive, then a 10Tb drive. Currently, I use a 110 Tb RAID array, but soon that won’t be large enough!

Data collection for the historic black hole image began in 2017 with a coordinated effort called the Event Horizon Telescope (EHT), which is a collection of seven radio telescopes from around the world that are linked to combine the capacity of all those telescopes, creating a “virtual” telescope the size of the Earth.

The now-famous image of a black hole comes from data collected over a period of seven days. At the end of that observation, the EHT didn’t have an image — it had a mountain of data. Scientists at MIT had to develop algorithms to take 5 Petabytes of data and make sense of it. That’s 5000 Terabytes!

While not on the same scale, BioTek Instruments provides Gen5™ as a software tool to combine, process and analyze microscopy images for biomedical research. In the end we hope to provide the tools that our customers need to solve their scientific questions in the microscopic world, but we still salute the cosmic success of MIT and the EHT team.

By: BioTek Instruments, Paul Held PhD, Laboratory Manager

No comments:

Post a Comment