Thursday, February 14, 2019

SLAS 2019: Time is money…


The old adage “Time is money” initially came to mind when I walked around the exhibition floor at the 2019 Society for Laboratory Automation and Screening (SLAS) conference in Washington DC. Attendees of this conference have embraced laboratory automation to its full extent. As I perused the floor and talked to different vendors, I couldn’t help but think that all of this laboratory automation equipment was designed for one purpose only: to save time…and time equals money.

It is easy to make this assumption. I used to watch the cartoon The Jetsons growing up and couldn’t help but think how nice it would be if we had Rosie, the robot maid in our house. Imagine all the time we would save by having a robot do our chores! The reason behind laboratory automation is a bit more complex than just saving time.

As a long time field sales representative for BioTek, I have seen my share of researchers make the assumption that laboratory automation is designed solely to help them save time. I would walk into labs and quickly scan the benches to see what was going on. Sometimes I would notice stacks of spent ELISA plates occupying the benches. I would immediately approach the PI or lab manager and asked if they have ever considered a BioTek automated microplate washer or dispenser to help them with their plate washing or dispensing needs. Many of these customers would laugh at me. The conversation would go a bit like this:
Me: I see you are running a lot of ELISA’s in your lab and don’t have a plate washer. How do you wash your plates?

Customer: Oh…we wash them by hand. It is a tedious process that takes a lot of time, but that is the way we have always done this.

Me: Have you ever considered a BioTek automated microplate washer? I see you have a BioTek microplate reader in your lab.

Customer: [Customer chuckles] We have grad students for that and grad student time is cheap. We don’t need a washer.

Me: What if I told you that an automated plate washer will not just save you time but that it can help your lab create more “publishable” results?

Customer: Tell me more….
The main reason behind laboratory automation has less to do with time than it does with consistency and reproducibility. Reproducible results are publishable results. In this example, an automated microplate washer for this customer’s ELISA plates would provide more consistent dispensing and aspiration of wash buffer into the ELISA plate leading to tighter CV’s.

BioTek booth at SLAS 2019

This brings me back to SLAS 2019 and some of the newer technologies we presented there. Systems like the BioTek AutoScratch™ were a big hit at the show. Scratch wound assays can provide cancer researchers with a way of quantifying how different conditions affect cell migration - an important element in the study of cancer metastasis.1 The typical “non-automated” method of creating a scratch in your cell monolayer requires the use of pipette tips and then manually scratching your cells to create a “wound” in the monolayer. Results can be inconsistent when this is done manually - varying downward pressure and scratch inconsistency can result in highly variable results as demonstrated in our recent application note.

After AutoScratch makes the perfect scratch wounds, you can load your assay plates on our BioSpa Live Cell Imaging System or Lionheart™ FX Automated Microscope. BioTek’s Gen5™ software can then use a predefined scratch assay application protocol to image and automatically quantify cell migration because we know exactly where the scratch is on every single well. Our customers at SLAS saw the value in a completely automated workflow solution for this application.

Another hit at SLAS was the new AMX™ Automated Media Exchange module for our MultiFlo™ FX system. Standard plate washers (such as the BioTek 405™ TS or EL406™) are very well established products for washing adherent or lightly adherent cells on microplates. The popularity of 3D cell cultures has required researchers to find new ways of washing non-adherent cells (e.g., spheroids) in microplates. Standard plate washers don’t do well with spheroids as the aspiration pressure would suck the spheroid out of the well. A gentler approach is needed.

I have seen researchers setup wash routines for spheroid washing on complex and expensive pipetting robots. I would describe this as the “killing a fly with a shotgun” approach. You would never use a complex pipetting robot for more standard plate washing routines.

Others have decided to take a step backward and go completely manual with this method; they use hand-held multichannel pipettes to wash their spheroid cultures. I would describe this as the “Karate Kid” approach…or “catching a fly with a set of chopsticks.”

Many of these researchers have explained to me that they have gotten very good with the manual approach and are pretty fast…even faster than the MultiFlo FX with AMX. The problem is consistency and reproducibility. You may miss a well here and there, skip a column on your plate or accidentally aspirate your spheroids when this is done manually. This is where the AMX comes in. It gives you consistent and reproducible results in an automated platform.

We had a great time presenting our new products at SLAS 2019 to our customer base that typically embraces automation. The next time you think about adding automation in your lab, think less about the time savings and more about how automation provides more publishable results!

1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857040/


By: BioTek Instruments,  Bikram Chakraborty, Product Manager, Commercial

No comments:

Post a Comment