Monday, October 10, 2016

CRISPR: From editing to imaging

Since the discovery of the CRISPR (clustered regularly interspaced short palindromic repeats) pathway, the evolution of the gene editing technology has been astounding. Applications now include not only an easily implemented method for genetic modification but adaptation for gene knockdown, generation of allelic series for control of differential expression, an alternative method for generation of inducted pluripotent stem cells, up-regulation for genetic screening and more recently loci imaging by creation of fluorescent protein:dCas9 conjugates to investigate nuclear and chromatin structure and dynamics with real time imaging1. While not without limitations the current applications show how quickly a technology can be adopted and further adapted to meet the needs of a plethora of investigators. In a similar fashion, the range of applications performed on BioTek’s expanding range of Automated Cell Imagers and Cell Imaging Multi-Mode Readers has been broadened. In a few short years the applications group and customer base have performed a wide range of assays such as wound-healing, proliferation, 3D cell culture and label-free cell counting, just to name a few. As the application space evolves so does the need for instrumentation that can provide flexible and affordable solutions. BioTek’s range of imaging capable instruments has certainly filled the bill. Wouldn’t automated loci imaging be interesting...


For further details of the imaging application space visit the BioTek website:

For a video of live cell imaging by Drost, J. et. al.:

1. Drost, Jarno; van Jaarsveld, Richard H.; Ponsioen, Bas; Zimberlin, Cheryl; van Boxtel, Ruben; Buijs, Arjan et al. (2015): Sequential cancer mutations in cultured human intestinal stem cells. In Nature 521 (7550), pp. 43–47.

By: BioTek Instruments, Peter J. Brescia Jr., MSc, MBA

No comments:

Post a Comment